Skip to main content

Examples Overview

Complete, runnable examples for common use cases - Get started quickly with production-ready code.


Available Examples

Browse our collection of production-ready examples. Each example is complete, tested, and ready to deploy.

Quick Reference

ExampleIndustryComplexityFeaturesTime to Deploy
Hello WorldAllBeginnerBasic query + policy5 minutes
Customer SupportSupportIntermediatePII redaction, RBAC, audit10 minutes
Banking AI AssistantBankingAdvancedRBI, PCI-DSS, Fraud Detection, PII45 minutes
Healthcare AssistantHealthcareAdvancedHIPAA, PII, RBAC30 minutes
E-commerce RecommendationsRetailIntermediateProduct data, personalization20 minutes
Trip PlannerTravelAdvancedMAP, MCP, LLM integration30 minutes

Hello World

The simplest AxonFlow example - Perfect for learning the basics.

What It Demonstrates

  • Basic query execution
  • Simple policy enforcement
  • Request/response handling
  • Audit logging

Code

TypeScript (30 lines):

import { AxonFlowClient } from '@axonflow/sdk';

const client = new AxonFlowClient({
endpoint: 'https://YOUR_AGENT_ENDPOINT',
licenseKey: 'YOUR_LICENSE_KEY',
organizationId: 'my-org'
});

async function main() {
const response = await client.executeQuery({
query: 'What is the capital of France?',
policy: `
package axonflow.policy
default allow = true
`
});

console.log('Response:', response.result);
console.log('Latency:', response.metadata.latency_ms + 'ms');
}

main();

Go (35 lines):

package main

import (
"context"
"fmt"
"log"

"github.com/getaxonflow/axonflow-sdk-go"
)

func main() {
client, _ := axonflow.NewClient(axonflow.Config{
Endpoint: "https://YOUR_AGENT_ENDPOINT",
LicenseKey: "YOUR_LICENSE_KEY",
OrganizationID: "my-org",
})

response, err := client.ExecuteQuery(context.Background(), &axonflow.QueryRequest{
Query: "What is the capital of France?",
Policy: `
package axonflow.policy
default allow = true
`,
})
if err != nil {
log.Fatal(err)
}

fmt.Println("Response:", response.Result)
fmt.Printf("Latency: %dms\n", response.Metadata.LatencyMS)
}

Quick Start

# Clone example
git clone https://github.com/axonflow/examples
cd examples/hello-world

# TypeScript
cd typescript
npm install
npm start

# Go
cd go
go run main.go

GitHub

📁 View on GitHub


Banking AI Assistant

RBI/PCI-DSS compliant banking AI assistant - Production-ready fraud detection and loan processing.

What It Demonstrates

  • Real-time fraud detection with AI-powered pattern analysis
  • Loan application processing with instant preliminary assessment
  • PII protection (SSN, account numbers) automatically
  • Regulatory compliance (ECOA, FCRA, TILA, RBI)
  • Complete audit trails for compliance requirements
  • In-VPC deployment for data sovereignty

Features

✅ Fraud Detection:

  • Impossible travel detection
  • Unusual transfer monitoring
  • Card cloning detection
  • Risk scoring (0-10 scale)

✅ Loan Processing:

  • Debt-to-income ratio analysis
  • Income multiple validation
  • Compliance checking (ECOA, FCRA, TILA)
  • Instant preliminary assessment

✅ PII Protection:

  • Automatic SSN redaction
  • Account number masking
  • Credit card protection
  • Contact information partial masking

✅ Compliance:

  • RBI guidelines built-in
  • PCI-DSS support
  • Complete audit logging
  • CloudWatch integration

Architecture

Quick Start

Note: Full implementation available to AWS Marketplace customers. See Banking Example for details.

# Clone repository (customers only)
git clone https://github.com/axonflow/examples
cd examples/banking-assistant

# Setup
npm install
docker-compose up -d

# Run
npm run dev

# Access at http://localhost:3000

Policy Example

package axonflow.policy.banking

import future.keywords

# Block suspicious transactions
deny["Suspicious: impossible travel"] {
input.transactions[i].location != input.transactions[j].location
time_diff := abs(input.transactions[i].timestamp - input.transactions[j].timestamp)
time_diff < 300 # 5 minutes
}

# Redact SSN from all queries
redacted_query := regex.replace(
input.query,
`\b\d{3}-\d{2}-\d{4}\b`,
"***-**-****"
)

# RBI compliance - data sovereignty
deny["RBI violation: cross-border data transfer"] {
input.context.data_location != "IN"
input.context.customer_region == "IN"
}

Performance

OperationLatencyNotes
Fraud pattern analysis<50msReal-time detection
Loan assessment<100msFull DTI calculation
PII detection<5msAutomatic redaction
Policy enforcement<10ms P95Single-digit ms typical

GitHub

📁 View on GitHub

Documentation

📖 Full Documentation


Healthcare Assistant

HIPAA-compliant medical AI assistant - Production-ready healthcare example.

What It Demonstrates

  • HIPAA compliance patterns
  • PII detection and redaction
  • Role-based access control (RBAC)
  • Patient data access controls
  • Multi-agent coordination
  • Audit trail for compliance
  • HL7/FHIR integration patterns

Features

✅ HIPAA Compliance:

  • Encryption at rest and in transit
  • Access controls and audit logging
  • Minimum necessary rule enforcement
  • PHI (Protected Health Information) protection
  • Breach notification procedures

✅ Security:

  • Role-based permissions (Doctor, Nurse, Admin)
  • Patient assignment validation
  • Business hours enforcement
  • Emergency access procedures
  • Comprehensive audit trail

✅ Technical:

  • React frontend with TypeScript
  • Go backend with PostgreSQL
  • AxonFlow policy enforcement
  • Real-time audit logging
  • CloudWatch integration

Use Cases

  1. Patient Records Access

    • Doctors access assigned patients only
    • Nurses have limited read access
    • Admins have full access with audit trail
  2. Prescription Management

    • Drug interaction checking
    • Dosage validation
    • Prescription history tracking
  3. Lab Results

    • Automated result distribution
    • Critical result alerts
    • Access based on patient assignment
  4. Appointment Scheduling

    • Availability checking
    • Conflict detection
    • Automated reminders

Architecture

Quick Start

# Clone repository
git clone https://github.com/axonflow/examples
cd examples/healthcare-assistant

# Setup database
docker-compose up -d postgres

# Run backend
cd backend
go run main.go

# Run frontend
cd frontend
npm install
npm start

# Access at http://localhost:3000

Configuration

Environment Variables:

# AxonFlow
AXONFLOW_ENDPOINT=https://your-agent-endpoint
AXONFLOW_LICENSE_KEY=AXON-V2-xxx-yyy
AXONFLOW_ORG_ID=healthcare-org

# Database
DATABASE_URL=postgresql://user:pass@localhost:5432/healthcare

# FHIR Integration (optional)
FHIR_BASE_URL=https://your-fhir-server
FHIR_CLIENT_ID=xxx
FHIR_CLIENT_SECRET=yyy

Policy Example

package axonflow.policy.healthcare

import future.keywords

# HIPAA minimum necessary rule
allow {
input.context.user_role in ["doctor", "nurse"]
is_patient_assigned_to_user(
input.context.user_id,
extract_patient_id(input.query)
)
}

# Emergency access (override with audit)
allow {
input.context.emergency_access == true
input.context.emergency_reason != ""
log_emergency_access
}

# Block access to all patient data (HIPAA violation)
deny["HIPAA violation: minimum necessary rule"] {
contains(lower(input.query), "all patients")
input.context.user_role != "admin"
}

# Redact SSN from queries
redacted_query := regex.replace(
input.query,
`\b\d{3}-\d{2}-\d{4}\b`,
"***-**-****"
)

Compliance Checklist

  • ✅ Encryption at rest (AES-256)
  • ✅ Encryption in transit (TLS 1.3)
  • ✅ Access controls (RBAC)
  • ✅ Audit logging (all PHI access)
  • ✅ Data retention (6 years)
  • ✅ Breach notification procedures
  • ✅ Emergency access with audit trail
  • ✅ Business Associate Agreement (BAA) with AxonFlow

GitHub

📁 View on GitHub

Documentation

📖 Full Documentation


E-commerce Recommendations

AI-powered product recommendation engine - Increase sales with personalized recommendations.

What It Demonstrates

  • Product catalog integration
  • Personalized recommendations
  • Inventory management
  • Price calculation with policies
  • Cart management
  • Order processing workflow
  • A/B testing for recommendations

Features

✅ Recommendations:

  • Collaborative filtering
  • Content-based filtering
  • Hybrid recommendations
  • Real-time personalization
  • Trending products

✅ Business Rules:

  • Dynamic pricing policies
  • Inventory constraints
  • Discount rules
  • Cross-sell/upsell logic
  • Geo-specific pricing

✅ Performance:

  • Sub-10ms recommendation latency
  • Real-time inventory checks
  • Cached product data
  • Batch processing for analytics

Use Cases

  1. Product Page Recommendations

    • "Customers who bought this also bought..."
    • "Similar products you might like"
    • "Complete the look"
  2. Cart Recommendations

    • "Frequently bought together"
    • "Add these items to save more"
    • "Don't forget..."
  3. Personalized Homepage

    • Based on browsing history
    • Based on purchase history
    • Trending in your area
  4. Email Campaigns

    • Abandoned cart recovery
    • Product recommendations
    • Back-in-stock alerts

Architecture

Quick Start

cd examples/ecommerce-recommendations

# Setup
npm install
docker-compose up -d

# Run
npm run dev

# Access at http://localhost:3000

Policy Example

package axonflow.policy.ecommerce

# Dynamic pricing based on user tier
apply_discount {
input.context.user_tier == "premium"
input.product.price_with_discount := input.product.price * 0.9
}

apply_discount {
input.context.user_tier == "gold"
input.product.price_with_discount := input.product.price * 0.85
}

# Geo-specific pricing
apply_geo_pricing {
input.context.country == "US"
input.product.price_usd := input.product.base_price
}

apply_geo_pricing {
input.context.country == "EU"
input.product.price_eur := input.product.base_price * 0.92
}

# Block out-of-stock recommendations
deny["Product out of stock"] {
input.product.inventory_count <= 0
}

GitHub

📁 View on GitHub

Documentation

📖 Full Documentation


Customer Support

Complete Community demo - AI governance for customer support with PII protection and RBAC.

Runnable Example: This is a fully-functional demo included in the Community repository. Clone and run with docker-compose up.

What It Demonstrates

  • PII Detection & Redaction (SSNs, credit cards, phone numbers)
  • Role-Based Access Control (agents, managers, admins)
  • Policy Enforcement (SQL injection prevention)
  • Audit Logging (complete data access trail)
  • LLM Integration (natural language to SQL)

Features

✅ Governance:

  • Automatic SSN/credit card redaction
  • Role-based PII visibility
  • SQL injection blocking
  • Dangerous query prevention

✅ RBAC:

  • Agent: Limited PII, regional access
  • Manager: Full PII, escalation handling
  • Admin: Global access, system admin

✅ Audit:

  • Complete query logging
  • User action tracking
  • Policy violation recording
  • Compliance reporting

Demo Scenarios

  1. Agent Query (PII Redaction)

    • Login as support agent
    • Query customer data
    • See SSNs automatically redacted
  2. Manager Query (Full Access)

    • Login as manager
    • Query same data
    • See full PII (role-based)
  3. SQL Injection Prevention

    • Try malicious query: DROP TABLE users;
    • Query blocked by policy

Architecture

┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│ React Frontend │────▶│ Go Backend │────▶│ PostgreSQL │
│ (Port 3000) │ │ (Port 8080) │ │ (Port 5432) │
└─────────────────┘ └────────┬────────┘ └─────────────────┘


┌─────────────────┐ ┌─────────────────┐
│ AxonFlow Policy │────▶│ LLM APIs │
│ Engine │ │ (OpenAI/Claude) │
└─────────────────┘ └─────────────────┘

Quick Start

# Clone Community repository
git clone https://github.com/getaxonflow/axonflow.git
cd axonflow/platform/examples/support-demo

# Set API key
export OPENAI_API_KEY=sk-your-key
# OR
export ANTHROPIC_API_KEY=sk-ant-your-key

# Start
docker-compose up -d

# Access at http://localhost:3000

Demo Users

EmailRolePassword
[email protected]Agentdemo123
[email protected]Managerdemo123
[email protected]Admindemo123

Policy Example

package axonflow.policy.support

# Redact SSN for non-managers
redacted_query := regex.replace(
input.query,
`\b\d{3}-\d{2}-\d{4}\b`,
"***-**-****"
) {
input.context.user_role != "manager"
input.context.user_role != "admin"
}

# Block SQL injection
deny["SQL injection blocked"] {
contains(upper(input.query), "DROP TABLE")
}

deny["SQL injection blocked"] {
contains(upper(input.query), "DELETE FROM")
}

GitHub

📁 View on GitHub

Documentation

📖 Full Documentation


Trip Planner

AI-powered travel planning assistant - Multi-agent coordination with MCP connectors.

What It Demonstrates

  • Multi-Agent Parallel (MAP) execution
  • MCP connector integration (Amadeus)
  • LLM integration (Claude)
  • Real-time flight/hotel search
  • Itinerary generation
  • Rate limiting patterns
  • Service identity & permissions

Features

✅ Travel Planning:

  • Flight search (Amadeus API)
  • Hotel recommendations
  • Activity suggestions
  • Weather forecasts
  • Restaurant recommendations
  • Complete itinerary generation

✅ Performance:

  • 5x faster with parallel execution
  • Sub-10ms policy enforcement
  • Real-time availability
  • Cached results

✅ Advanced Patterns:

  • Service-based authentication
  • MCP connector permissions
  • Rate limiting (100/hour, 500/day)
  • Graceful fallback (LLM)
  • Multi-agent orchestration

Use Cases

  1. Complete Trip Planning

    • Search flights
    • Find hotels
    • Suggest activities
    • Generate itinerary
    • All in single request
  2. Budget Optimization

    • Compare flight prices
    • Find best hotel deals
    • Optimize for budget
    • Suggest alternatives
  3. Multi-City Trips

    • Complex routing
    • Multiple destinations
    • Optimized connections
    • Time zone handling

Architecture

Quick Start

cd examples/trip-planner

# Setup backend
cd backend
go mod download
go run main.go

# Setup frontend
cd frontend
npm install
npm run dev

# Access at http://localhost:3000

Service License Configuration

// Service identity with MCP permissions
const client = new AxonFlowClient({
endpoint: process.env.AXONFLOW_ENDPOINT,
licenseKey: process.env.SERVICE_LICENSE_KEY, // Service-specific key
organizationId: 'travel-agency',
serviceIdentity: {
name: 'trip-planner',
type: 'backend-service',
permissions: [
'mcp:amadeus:search_flights',
'mcp:amadeus:search_hotels',
'mcp:amadeus:lookup_airport'
]
}
});

Policy Example

package axonflow.policy.travel

# Allow service to access Amadeus API
allow {
input.service.name == "trip-planner"
input.service.permissions[_] == sprintf("mcp:amadeus:%s", [input.mcp.operation])
}

# Enforce rate limiting
deny["Rate limit exceeded"] {
request_count := count_requests_last_hour(input.service.name)
request_count > 100
}

# Budget validation
deny["Budget too low"] {
input.budget < 100
input.budget_type == "total"
}

Performance

Sequential Execution (traditional):

Flight search: 5s
Hotel search: 5s
Activities: 8s
Weather: 3s
Restaurants: 8s
Total: 29 seconds

Parallel Execution (MAP):

All 5 queries in parallel: 8s (max of all)
Speedup: 3.6x

GitHub

📁 View on GitHub

Documentation

📖 Full Documentation


Choosing the Right Example

By Industry

IndustryRecommended ExampleKey Features
Banking/FinanceBanking AI AssistantRBI, PCI-DSS, fraud detection, PII
HealthcareHealthcare AssistantHIPAA, PII protection, RBAC
Retail/E-commerceE-commerce RecommendationsPersonalization, inventory, pricing
SaaS/TechCustomer SupportTicket automation, knowledge base
TravelTrip PlannerMAP, MCP connectors, LLM

By Complexity

Beginner: Start with Hello World, then try E-commerce or Customer Support

Intermediate: E-commerce Recommendations or Customer Support

Advanced: Banking AI Assistant, Healthcare Assistant, or Trip Planner (compliance, multi-agent, MCP)

By Features

Need MCP Connectors? → Trip Planner or Healthcare Assistant

Need Multi-Agent (MAP)? → Trip Planner

Need HIPAA Compliance? → Healthcare Assistant

Need RBI/PCI-DSS Compliance? → Banking AI Assistant

Need Fraud Detection? → Banking AI Assistant

Need LLM Integration? → Trip Planner or Customer Support


Running Examples Locally

Prerequisites

All examples require:

  1. AxonFlow deployed (see Getting Started)
  2. License key (from CloudFormation outputs)
  3. Node.js 18+ or Go 1.21+

General Steps

# 1. Clone repository
git clone https://github.com/axonflow/examples
cd examples/[example-name]

# 2. Configure environment
cp .env.example .env
# Edit .env with your credentials

# 3. Install dependencies
npm install # or go mod download

# 4. Run
npm start # or go run main.go

Contributing

We welcome contributions! See CONTRIBUTING.md

Adding a New Example

  1. Follow existing structure
  2. Include README with setup instructions
  3. Add .env.example file
  4. Include sample policies
  5. Add tests
  6. Update this overview page

Support

Questions about examples?


All examples tested with AxonFlow v1.0.12 - Last updated: December 5, 2025