Skip to main content

Architecture Overview

AxonFlow is designed as a cloud-native, distributed AI control plane that provides sub-10ms policy enforcement and multi-agent orchestration capabilities.

High-Level Architecture

┌─────────────────────────────────────────────────────────────┐
│ Customer AWS Account │
│ ┌────────────────────────────────────────────────────────┐ │
│ │ Customer VPC │ │
│ │ │ │
│ │ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Public │ │ Public │ │ │
│ │ │ Subnet AZ1 │ │ Subnet AZ2 │ │ │
│ │ │ │ │ │ │ │
│ │ │ ┌────────┐ │ │ │ │ │
│ │ │ │ ALB │◄─┼─────────┼──────────────┼─────────►│ │
│ │ │ └───┬────┘ │ │ │ HTTPS │ │
│ │ └──────┼────────┴─────────┴──────────────┘ │ │
│ │ │ │ │
│ │ ┌──────┼────────┬─────────────────────────┐ │ │
│ │ │ Private │ Private │ │ │
│ │ │ Subnet AZ1 │ Subnet AZ2 │ │ │
│ │ │ │ │ │ │
│ │ │ ┌─────────┐ │ ┌─────────┐ │ │ │
│ │ │ │ Agent │ │ │ Agent │ │ │ │
│ │ │ │ Tasks │ │ │ Tasks │ │ │ │
│ │ │ │ (x5) │ │ │ (x5) │ │ │ │
│ │ │ └────┬────┘ │ └────┬────┘ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ ┌────▼────┐ │ ┌────▼────┐ │ │ │
│ │ │ │ Orch. │ │ │ Orch. │ │ │ │
│ │ │ │ Tasks │ │ │ (x10) │ │ │ │
│ │ │ │ (x10) │ │ │ │ │ │ │
│ │ │ └────┬────┘ │ └────┬────┘ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ ┌────▼────────────────▼────┐ │ │ │
│ │ │ │ RDS PostgreSQL │ │ │ │
│ │ │ │ Multi-AZ │ │ │ │
│ │ │ └─────────────────────────┘ │ │ │
│ │ └──────────────────────────────────────┘ │ │
│ └────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘

Core Components

Agent Service

The Agent service is the primary entry point for policy enforcement and AI agent execution.

Key Features:

  • Sub-10ms P95 policy evaluation latency
  • HTTP/2 + TLS 1.3 for high-performance communication
  • Stateless architecture for horizontal scaling
  • Built-in health checks and auto-recovery

Specifications:

  • Default Count: 5 tasks (configurable 1-50)
  • CPU: 1 vCPU per task
  • Memory: 2 GB per task
  • Port: 8080
  • Protocol: HTTP/2

Responsibilities:

  • Policy evaluation and enforcement
  • Request validation and authentication
  • MCP connector orchestration
  • Audit logging
  • Rate limiting and quota management

Orchestrator Service

The Orchestrator service handles multi-agent coordination and parallel task execution (MAP).

Key Features:

  • Multi-Agent Planning (MAP) for parallel execution
  • Task scheduling and load balancing
  • Inter-agent communication
  • 40x performance improvement through parallelization

Specifications:

  • Default Count: 10 tasks (configurable 1-50)
  • CPU: 1 vCPU per task
  • Memory: 2 GB per task
  • Port: 8081
  • Protocol: HTTP

Responsibilities:

  • Multi-agent task coordination
  • Parallel execution scheduling
  • Resource allocation
  • Task result aggregation
  • Error handling and retries

Database Layer

PostgreSQL database for persistent storage and audit trails.

Specifications:

  • Engine: PostgreSQL 15.4
  • Deployment: Multi-AZ for high availability
  • Storage: 100 GB GP3 (expandable)
  • Encryption: At-rest encryption enabled
  • Backups: Automated daily backups (7-day retention)

Data Stored:

  • Policy definitions and versions
  • Audit logs and compliance trails
  • MCP connector configurations
  • Agent execution history
  • Performance metrics

Application Load Balancer

Internal ALB for routing and SSL termination.

Features:

  • HTTP/2 support for reduced latency
  • TLS 1.3 encryption
  • Health checks with automatic failover
  • Connection draining for zero-downtime updates

Configuration:

  • Type: Application Load Balancer
  • Scheme: Internal (in-VPC only)
  • Protocol: HTTPS (443)
  • Target: Agent service (port 8080)

Design Principles

1. Performance First

  • Sub-10ms P95 Guarantee: Every architecture decision optimized for latency
  • HTTP/2: Binary protocol for reduced overhead
  • Connection Pooling: Persistent connections to database
  • Stateless Services: No session affinity required

2. Security by Default

  • In-VPC Deployment: Data never leaves customer infrastructure
  • Encryption Everywhere: TLS 1.3 in transit, encryption at rest
  • Least Privilege: Minimal IAM permissions
  • Audit Logging: Complete trail of all operations

3. High Availability

  • Multi-AZ Deployment: Services and database across availability zones
  • Auto Scaling: Automatic capacity adjustment
  • Health Checks: Continuous monitoring with auto-recovery
  • Zero-Downtime Updates: Rolling deployments

4. Observable by Design

  • CloudWatch Integration: Native AWS monitoring
  • Structured Logging: JSON logs for easy parsing
  • Custom Metrics: Policy latency, throughput, error rates
  • Distributed Tracing: Request flow across services

Scalability

Horizontal Scaling

Agent Service:

  • Scales from 1 to 50 tasks
  • Auto-scaling based on CPU utilization (target: 70%)
  • Scale-out: 60 seconds
  • Scale-in: 300 seconds (5 minutes)

Orchestrator Service:

  • Scales from 1 to 50 tasks
  • Auto-scaling based on CPU utilization (target: 70%)
  • Independent scaling from Agent service

Vertical Scaling

ECS Tasks:

  • Configurable CPU: 256-4096 (0.25-4 vCPU)
  • Configurable Memory: 512-30720 MB (0.5-30 GB)

RDS Database:

  • Instance types: db.t3.medium to db.r5.xlarge
  • Storage: Auto-scaling enabled
  • Read replicas: Available for read-heavy workloads

Performance Characteristics

Latency

  • Policy Evaluation: <10ms P95 (guaranteed)
  • Agent Execution: <30ms P95 (without external calls)
  • MAP Coordination: <50ms P95 for 10-agent tasks
  • Database Queries: <5ms P95

Throughput

Pilot Tier:

  • 50,000 requests/month
  • ~17 requests/minute average
  • Burst: 100 requests/second

Growth Tier:

  • 500,000 requests/month
  • ~167 requests/minute average
  • Burst: 500 requests/second

Enterprise Tier:

  • Unlimited requests
  • Auto-scaling to handle demand
  • Burst: >1,000 requests/second

Resource Utilization

Default Configuration (5 agents + 10 orchestrators):

  • Total vCPU: 15 (5 + 10)
  • Total Memory: 30 GB (10 + 20)
  • Database: db.t3.medium (2 vCPU, 4 GB RAM)
  • Total Monthly Cost: ~$400-500 in AWS charges (excluding AxonFlow licensing)

Integration Points

Inbound

  • LLM Providers: AWS Bedrock, OpenAI, Anthropic
  • AI Frameworks: LangChain, LlamaIndex, custom
  • Application Clients: REST API, SDKs

Outbound

  • MCP Connectors: Amadeus, Redis, PostgreSQL, HTTP REST
  • AWS Services: Secrets Manager, CloudWatch, Systems Manager
  • Custom Integrations: Via MCP protocol

Security Architecture

For detailed security information, see Security Architecture.

Key Security Features:

  • In-VPC deployment (no internet exposure)
  • Security groups with least-privilege rules
  • IAM roles with minimal permissions
  • Secrets Manager for credential storage
  • Encryption at rest and in transit
  • Complete audit logging

Next Steps